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Using a piecewise linear bottom to �t the bed variation in a
laterally averaged, z-co-ordinate hydrodynamic model
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SUMMARY

In developing a 3D or laterally averaged 2D model for free-surface �ows using the �nite di�erence
method, the water depth is generally discretized either with the z-co-ordinate (z-levels) or a transformed
co-ordinate (e.g. the so-called �-co-ordinate or �-levels). In a z-level model, the water depth is dis-
cretized without any transformation, while in a �-level model, the water depth is discretized after a
so-called �-transformation that converts the water column to a unit, so that the free surface will be 0 (or
1) and the bottom will be −1 (or 0) in the stretched co-ordinate system. Both discretization methods
have their own advantages and drawbacks. It is generally not conclusive that one discretization method
always works better than the other. The biggest problem for the z-level model normally stems from
the fact that it cannot �t the topography properly, while a �-level model does not have this kind of a
topography-�tting problem.
To solve the topography-�tting problem in a laterally averaged, 2D model using z-levels, a piecewise

linear bottom is proposed in this paper. Since the resulting computational cells are not necessarily
rectangular looking at the x–z plane, �ux-based �nite di�erence equations are used in the model to
solve the governing equations. In addition to the piecewise linear bottom, the model can also be run
with full cells or partial cells (both full cell and partial cell options yield a staircase bottom that does
not �t the real bottom topography). Two frictionless wave cases were chosen to evaluate the responses
of the model to di�erent treatments of the topography. One wave case is a boundary value problem,
while the other is an initial value problem. To verify that the piecewise linear bottom does not cause
increased di�usions for areas with steep bottom slopes, a barotropic case in a symmetric triangular
basin was tested. The model was also applied to a real estuary using various topography treatments.
The model results demonstrate that �tting the topography is important for the initial value problem.
For the boundary value problem, topography-�tting may not be very critical if the vertical spacing is
appropriate. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Twomethods are generally used to discretize the water column in a 3D or a laterally av-
eraged 2D hydrodynamic model using the �nite di�erence method. One is to discretize the
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water column without any co-ordinate transformation, or the z-co-ordinate is directly used
for the spatial discretization in the vertical direction. This kind of a hydrodynamic model is
also called a z-level model. The other method is to discretize the water column after a co-
ordinate transformation. One of the most popular co-ordinate transformations is the so-called
�-transformation that converts the water column to a unit, so that the free surface will be 0
(or 1) and the bottom will be −1 (or 0) in the stretched co-ordinate system. A hydrodynamic
model that uses a �-co-ordinate system is often called a �-level model. In �-level models (e.g.
References [1, 2]), the water column is divided into a �xed number of vertical layers. The
thickness of each layer can vary in the vertical direction but the ratio of the layer thickness
to the total water depth is �xed for the same layer. Therefore, the layer thickness varies
horizontally, depending on the water depth. A �-co-ordinate model can �t the topography
nicely but pays the price of pressure gradient errors and increased numerical di�usions for
areas with steep bottom slopes [3, 4].
In a z-level model, the water column is sliced into di�erent layers with horizontal planes.

Although the vertical spacing may vary in the vertical direction, each layer has the same thick-
ness everywhere. Model variables are placed at the same level for the same layer. Traditional
z-level models use a relatively thick surface layer to cover the variation of the free surface
[5], while recent z-level models allow the free surface to travel from one layer to another
[6–10]. Depending on the water depth, the number of grid points in the vertical direction
varies in a z-level model. Shallow areas have fewer vertical grid points than deep areas do.
In most z-level models, if the bottom elevation is lower than the middle point of a layer,
then the entire cell will be taken as a valid one and the bottom of the layer is the bottom
boundary in the computational domain. Otherwise, the cell is abandoned and the top of the
layer will be used as the bottom boundary. As a result of this treatment, the bottom cell in
the computation always has the same thickness as the horizontal layer. This kind of a bottom
cell is a full cell. Recent improvements of z-level models involved the use of partial cells for
a better approximation of the bottom topography. Instead of using the thickness of the layer
(��), the di�erence between the top of the layer and the real physical bottom is used as the
bottom cell thickness [10, 11], which is generally smaller than the layer thickness. Since the
side view (looking at the x–z plane) of a full cell or a partial cell is rectangular, both bottom
treatment methods yield a staircase bottom that does not �t the real topography. To eliminate
the staircase bottom, this paper proposes the use of a piecewise linear bottom to �t the to-
pography. Figure 1 shows the various treatment methods for the bottom topography. When a
piecewise linear bottom is used, the side views of the bottom cells are generally not rectangu-
lar. Obviously, the piecewise linear bottom is terrain-following, while the full cell and partial
cell methods are not. The piecewise linear bottom, along with the full cell and partial cell
options, is implemented in a laterally averaged model named LAMFE [7–9, 12, 13], allowing
some comparisons of model results using di�erent topography treatment methods [13].
In the following sections, governing equations for hydrodynamics and transport processes in

narrow rivers and estuaries are �rst given in Section 2. Details on the piecewise linear bottom
are then described in Section 3, followed by a presentation of �ux-based �nite di�erence
equations using a free-surface correction (FSC) method in Section 4. Section 5 presents
several test cases to investigate responses of the model to various treatments of the bottom
topography. Two frictionless wave cases were evaluated. One wave case is an initial value
problem, while the other is a boundary value problem. The initial value problem is a seiche
oscillation in a triangular basin and the boundary value problem is a co-oscillating long wave
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Figure 1. Various topography treatment methods in the laterally averaged,
two-dimensional hydrodynamic model LAMFE.

in a channel with a small bottom slope. To verify that the piecewise linear bottom does not
cause increased numerical di�usions for areas with steep bottom slopes, a barotropic case in a
symmetric triangular basin was tested with a vertically varying salinity. The model was also
applied to an actual narrow estuary using various bottom treatments. The conclusions of the
study are summarized in Section 6.

2. GOVERNING EQUATIONS

A laterally averaged model for estuaries (LAMFE) has been developed to study hydrodynamics
and transport processes in various narrow rivers and estuaries in the southwest portion of
the Florida Peninsula [7, 9, 11–13]. The model solves the following laterally averaged, two-
dimensional equations of hydrodynamics and transport processes:
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1188 X. CHEN

where t is the time, x the longitudinal co-ordinate along the river=estuary, z the vertical co-
ordinate, u and w denote velocity components in x- and z-directions, respectively; v is the
lateral velocity from lateral inputs (sheet �ow of direct runo�, tributary, etc.); b, p, g and � de-
note the width, pressure, gravitational acceleration and the free surface elevation, respectively;
�wx represents the shear stress due to the friction acting on the sidewall (=�Cwu[u2 +w2]1=2,
where Cw is a non-dimensional frictional coe�cient for sidewalls); Ah and Av are kinetic
eddy viscosities in the x- and z-directions, respectively; c represents concentration (salt or
temperature); ct represents concentration in tributaries; Bh and Bv are eddy di�usivities in the
x- and z-directions, respectively; and D is the density which is a function of salinity and
temperature.
Replacing p in Equation (2) with the right-hand side of Equation (3) and using the Leibnitz

integration law, the longitudinal pressure gradient in Equation (2) can be written as
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where �� represents density at the free surface. The �rst term on the right-hand side of Equa-
tion (5) is the barotropic pressure component, while the second term is the baroclinic pressure
component. Inserting Equation (5) into Equation (2) and using the Bousinnesq approximation,
one obtains
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The equation for the location of the free surface is obtained by integrating Equation (1)
over the water depth. Considering the direct rainfall to the water surface in the model, we
obtain
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where h0 is the bottom elevation, r the net rain intensity (rainfall minus evaporation) having
the same units as the velocity and b� the width of the river=estuary at the free surface.
The e�ect of the direct rainfall on the concentration distribution is considered as the �ux

to the top cell of the water column as follows:
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where �� is the thickness of the surface layer, the subscript ‘−’ denotes the bottom of the
top layer and cr represents salinity in rainfall (0 by default).
Equations (7) and (8) suggest how boundary conditions for Equations (1) and (4) are

speci�ed at the free surface. The boundary condition for Equation (2) (or Equation (6)) at
the free surface is determined by the wind shear stress in the x-direction. At the bottom, it is
assumed that no �uxes of water and=or materials entering=leaving the water column through
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the bed and that turbulence is fully developed so that a log-layer distribution of velocity can
be used to calculate the bottom shear stress. In the longitudinal direction, boundary conditions
at the upstream and downstream boundaries are speci�ed with either the free-surface elevation
or the vertical pro�le of the longitudinal velocity. Specifying the longitudinal velocity pro�le
also implies that appropriate Neumann-type boundary conditions are used for pressure. As a
special case, normal velocity is set to zero if one or both ends are closed (dead ends).

3. COMPUTATIONAL CELLS

A Cartesian grid system using hybrid cells shown in Figure 2 is used to develop the laterally
averaged 2D model. In Figure 2, long dashed lines form a total of NxNz grid cells, where Nx
is the number of grids in the longitudinal direction and Nz is the number of vertical layers
used to discretize the water column. Each grid cell is numbered at its centre with indexes i
and k in the longitudinal and vertical directions, respectively. With a staggered arrangement
of model variables, ui; k is de�ned at the centre of the right face of the cell, while wi; k is
de�ned at the centre of the top face. The density �i; k , concentration ci; k , river width bi; k and
pressure pi; k are de�ned at the centre of the cell. The surface elevation (�i) and water depth
(Di) are de�ned at the centre of the longitudinal grid. The geometry of the estuary is de�ned
by the river width at the centre of the grid cell. The thick solid line in Figure 2 represents the
piecewise linear bottom. The solid line and the short dashed line near the top of the graph
are the water surfaces at two time points, t1 and t2, respectively.
As shown in Figure 2, the longitudinal spacing �x varies only with i, while the layer

thickness �� is constant for the same k-index. It should be pointed out that grid cells formed
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Figure 2. Discretizing the water column using z-levels with hybrid cells. The thick black line denotes
the piecewise linear bottom. Long dashed lines form grid cells. The circle represents the pressure point,
while ‘-’ and ‘|’ are u and w points, respectively. Concentrations, density and river width are de�ned at
the pressure point. The solid line near the top of the graph is the water surface at a time point, while

the short dashed line is the water surface at another time point.
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by long dashed lines in Figure 2 are not necessarily the same as computational cells because
of the longitudinal variations of the bed and water surface. Note that grid cells and com-
putational cells are two di�erent concepts in this context. The side views of grid cells are
always rectangular, while computational cells are not necessarily rectangular looking from the
side. Computational cells are the actual control volumes for which the governing equations
are solved. Furthermore, owing to the staggered arrangement of model variables, computa-
tional cells (control volumes) for computing concentrations are not the same as those for
computing the u-velocity even when they have the same cell indexes i and k. To distinguish
computational cells for calculating the u-velocity from those for calculating concentrations,
computational cells for calculating the u-velocity are called computational u-cells in this paper,
while computational cells for computing concentrations are called computational c-cells.
In Figure 2, the water column with the longitudinal index of i has Nz grid cells, but has

only three (3) computational c-cells stacked one on another at t= t1. Denoting the k-indexes
for the bottom and surface computational c-cells as kni and kmi, respectively, then kni=K
and kmi=K+2. Obviously, only the middle computation c-cell (with the k-index=K+1) is
the same as the grid cell. Both the surface and bottom computational c-cells are not identical
to their corresponding grid cells. At another time point (t= t2), however, the water surface
is higher than that at t= t1 and the water column has four computational c-cells, of which
the two interior ones are the same as the grid cells. Owing to a higher surface elevation, the
maximum k-index at t= t2 becomes kmi=K +3. The model calculates and saves km at each
time step for all the longitudinal grids. The criterion for determining kmi is to see whether
the water surface �i is above or below the middle point of a certain grid cell. The water
surface �i should always be higher than the middle point of the kmith grid cell for the ith
longitudinal grid. If the free surface drops below the middle point of the kmith grid cell from
one time step to the next time step, then the surface computational c-cell is aggregated to
the cell below it. In this case, kmi is reduced by 1, so that �i at the new time step is higher
than the middle point of the kmith grid cell. On the other hand, if a surface computational
c-cell contains two � points (two grid cell centres) at a new time step, it is split into two
computational c-cells. In this case, the top one is the new surface computational c-cell at
the new time step and kmi is increased by 1. By implementing this kind of volume of �uid
(VOF) technique, the free surface can travel from one layer to another and there is no need
to use a thick surface layer to cover the free-surface variation. Therefore, thin layers can be
used near the free surface, allowing a �ne resolution for area near the water surface.
As can be seen in Figure 2, bottom computational u- and c-cells generally consist of one

or more bottom grid cells that are directly adjacent to the bed. If more than one grid cell
is involved, then only one grid cell centre is contained in the computational cell, with other
grid cell centres being chopped o� by the bed. To ensure that the bottom u-point is within
the log-layer, the distance between the bottom u-point and the bed should be larger than
the thickness of the viscous sub-layer. If the vertical distance between the lowest calculated
u-velocity and the bed is smaller than the viscous sub-layer, the bottom computational u-cell
is aggregated to the one above it to form a new bottom computational u-cell. Figure 3 shows
the side view and the three-dimensional view of a typical bottom computational u-cell. The
side and the three-dimensional views of a typical bottom computational c-cell are illustrated
in Figure 4. Owing to the way the river width is de�ned, the shape of a bottom computational
u-cell can be either an octahedron or a decahedron. For the computational c-cell, it can have
12, 13 or even 14 faces.
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Figure 3. A side view (left) and a 3D view (right) of a typical bottom computational u-cell. The cell
is an octahedron, but can also be a decahedron.
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Figure 4. A side view (left) and a 3D view (right) of a typical bottom computational c-cell. Owing to
the way the river width is de�ned, the cell generally has 13 faces.

4. NUMERICAL SCHEME

The model employs the FSC method described in Reference [12] to solve the momentum
and continuity equations in two steps. In the �rst step, an intermediate longitudinal velocity
is calculated with the explicit surface elevation gradient, before an intermediate free-surface
elevation is estimated. In the second step, the intermediate velocity �eld is corrected to obtain
the �nal velocity �eld, after a free-surface correction equation is solved to �nd the �nal free-
surface elevation. The FSC method is an e�cient method because it is unconditionally stable
with respect to gravity waves, the vertical eddy viscosity term and the bottom and sidewall
stresses. Details on the FSC method are documented in Reference [12]. This section presents
the �nite di�erence equations without any derivations of the FSC method.
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The LAMFE model takes advantage of both the �nite di�erence method and the �nite vol-
ume method. For interior computational cells, because they are the same as their corresponding
grid cells, the �nite di�erence equation for the longitudinal momentum balance is directly de-
rived from the partial di�erential equation (Equation (6)) with the implicit discretization of
the vertical eddy viscosity term, but with the explicit discretization of the barotropic term
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where �t is the time step used in the computation; the superscript n represents the previous
time step, while the superscript n+∗ represents the intermediate solution at the new time
step; �n is the free surface location at the previous time step; and H n

x is an explicit �nite
di�erence operator containing the convection terms, the baroclinic term and the longitudinal
eddy viscosity term.
For the bottom and surface computational cells, because they are generally di�erent from

their corresponding grid cells, the following �ux-based �nite di�erence equation is used to
calculate the intermediate velocity:
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where Gn
x represents the sum of the �uxes of the longitudinal momentum entering the com-

putational u-cell plus the total baroclinic force acting on it; az is the projection of the area
of the top=bottom face of the computational cell onto the horizontal plane; ax is the area of
the left=right face of the computational cell; �z is the average cell thickness; and V is the
volume of the cell. The left-hand side of the above equation represents the local acceleration
at the centre of the computational u-cell. As a �rst order approximation, the local acceleration
at the centre of the computational u-cell is related to that at the u-point as follows:
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where subscripts ‘cc’ and ‘up’ denote the cell centre and the u-point of the computational
u-cell, respectively; ∇ denotes the divergence operator; and �l is a vector pointing from the
u-point to the centre of the computational u-cell: �l = �xi + �zk, where �x and �z are the
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Plate 1. A symmetric triangular basin is �lled with water that has a vertical salinity dis-
tribution at t=0 h (a). The same salinity distribution is still retained without any arti�cial
baroclinic circulation after the model was run for a simulation time period of 720 h (b).

The piecewise linear bottom was used in the simulation.
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projections of the distance between u-point and the centre of the cell in the x- and z-directions,
respectively.
For shallow water �ows in narrow rivers and estuaries, the vertical length scale is gener-

ally two to three orders of magnitude smaller than the longitudinal length scale and �x is
insigni�cant in comparison with the longitudinal spacing. Therefore, the change of the local
longitudinal acceleration of the water particle due to �x is negligible, or
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For the bottom cell, if a log-layer distribution of velocity is assumed for fully developed
turbulence, we have
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where � is the von Karman constant (0.41), u∗ is the frictional velocity, z0 = ks=30, and ks
is the bottom roughness. Therefore, the local longitudinal acceleration at the cell centre is
related to that at the u-point as follows:
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For surface computational cells, an inverse log-layer distribution of velocity is assumed for
fully developed turbulence and we have
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Replacing the left-hand side of Equation (10) with the right-hand side of Equation (15)
for the bottom computational u-cell and that of Equation (18) for the surface computational
u-cell, the intermediate longitudinal velocity for the entire water column can be calculated
from Equations (9) and (10). Once un+

∗
is determined, the intermediate vertical velocity

and the intermediate free surface can be computed by considering the mass balance of the
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computational c-cells and the mass balance of the water column of the each longitudinal grid.
The resulting �ux-based �nite di�erences are
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face of the computational c-cell; ��∗i (= �

n+∗
i − �ni ) is the increment in free-surface elevation

that is estimated from the intermediate velocity �eld, or ��∗i is the di�erence between the
intermediate free-surface and the free surface at the previous time step; bnni is the average
river width at the free surface of the ith grid; 	 is a model parameter varying between 0 and
1 (fully explicit for 	=0 and fully implicit for 	=1); and U n+∗

i and U n
i are the total water

�uxes through the right face of the ith grid calculated using un+
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and un, respectively.

In the second step of the FSC method, the free-surface elevation is corrected by solving
the following free-surface correction equation (see Reference [12] for details):
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where ��i(= �n+1i − �ni ) is the �nal increment of the free surface over the time step �t and
Ai+1=2 is the cross-section area at the right face of the longitudinal grid (the sum of wetted
areas of right faces for grid cells with the longitudinal grid index i). Equation (21) can be
re-arranged as follows:

−Rw��i−1 + (1 + Rw + Re)��i − Re��i+1 =��∗i (22)

where

Rw=
g	2�t2

�xi�xi−1=2

Ai−1=2
bn�i

; Re=
g	2�t2

�xi�xi−1=2

Ai+1=2

bn�i
(23)

Equation (22) is a tri-diagonal system and can be easily solved using the Thomas Algorithm.
After the �nal free-surface location is found, the �nal longitudinal momentum equation can
be solved from the following velocity-correction equation [12]:

un+1i; k = u
n+∗
i; k − g	�t @��

@x
(24)

The �nal vertical velocity �eld is calculated from the following �ux-based �nite di�erence
equation that guarantees the mass conservation for each computational c-cell:

wn+1i; k =
1

anzi; k+1=2
(anzi; k−1=2w

n+1
i; k−1 − Fn+1i+1=2; k + F

n+1
i−1=2; k + v

n+1=2
i; k �z ni; k�xi) (25)
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Figure 5. A triangular basin with a constant width.

where Fn+1i−1=2; k is the water �ux crossing the left face of the computational c-cell and is
calculated using the �nal longitudinal velocity distribution.
For the transport equation, the �ux-based �nite di�erence equation is derived from the

mass balance of the material for the computational c-cell. With an implicit discretization of
the vertical di�usion term, the resulting �ux-based �nite di�erence equation takes the following
form

V n+1i; k cn+1i; k − V n
i; kc

n
i; k

�t
=−F nxi+1=2; k + F nxi−1=2; k − F nzi; k+1=2 + F nzi; k−1=2 + Fn+1=2yi; k + Fn+1=2ri; k

+
(
axBh

@cn

@x

)
i+1=2; k

−
(
axBh

@cn

@x

)n
i−1=2; k

+
(
azBv

@cn+1

@z

)
i; k+1=2

−
(
azBv

@cn+1

@z

)
i; k−1=2

(26)

where V is the volume of the cell, F nxi+1=2; k and F
n
zi; k+1=2 are advective �uxes through the right

and top faces of the cell; and Fn+1=2yi; k and Fn+1=2ri; k are �uxes from the tributaries and from the

atmosphere (Fn+1=2ri; k is always zero for cells other than the surface cell).

5. TESTS OF BOTTOM TREATMENT METHODS

5.1. An initial value problem

The initial value problem is a seiche oscillation in a triangular basin with a constant width
(Figure 5) and a constant density. The right-angled basin has the following depth pro�le:

d(x)=
D
L
x (27)
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Figure 6. Comparison of the simulated surface elevations at x=50m of the triangular basin
using the three di�erent bottom treatment methods (solidline is piecewise linear bottom,
dashed line is partial cell and dash–dotted line is full cell). The small inset is a zoom-in

for the �rst 1024 s. The aspect ratio of the grid cell is 0.004.

where d is the water depth, x is measured from left to right, D is the maximum depth of
the basin and L is the basin length. The seiche oscillation is generated by an initial surface
set-up with the following sinusoidal function:

�=5 sin
(
2x − L
2L



)

(28)

where the surface elevation � is in cm.
In the initial value problem, D=10m and L=900m. When the LAMFE model was applied

to simulate the oscillation, a constant vertical spacing of ��=0:4m and a constant longitudinal
spacing of �x=100m were used. All three topography treatment methods (full cells, partial
cells and the piecewise linear bottom) were tested and model results were compared to observe
the responses of the model to various treatment methods. Frictions at the bottom and the
sidewall were set to zero in simulating the seiche oscillation case. Eddy viscosities used for
both the vertical and longitudinal directions were constant and very small (Ah=5cm2 s−1 and
Av=1 cm2 s−1).
Figure 6 shows simulated surface elevations at x=50 m using the three bottom treatment

options. The solid line in Figure 6 is the simulated surface using the piecewise linear bottom
treatment. Dashed and dotted lines are simulated water surfaces using the full cell and partial
cell options, respectively. From Figure 6, it can be seen that simulated surface elevations using
di�erent bottom treatment methods are quite di�erent. While the simulated surface elevations
vary in a similar way for all three simulations, their di�erences become larger as time goes
on. This is mainly due to the fact that the simulated fundamental wave periods are di�erent
for the three bottom topography treatments. The small inset in Figure 6 shows the �rst 1024s
of the model results. The di�erences in wave speed can be clearly seen.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1185–1205



Z-CO-ORDINATE HYDRODYNAMIC MODEL 1197

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

1

2

3

4

5

6

Frequency

A
m

p
lit

u
d

e
Partial Cell
P.W. Linear 

Full Cell

Bottom

Atx = 50 m 

(c
m

)

(1/sec)

Figure 7. Comparison of FFT results for simulated surface elevations at x=50m of the triangular basin
using the three di�erent bottom treatment methods (solidline is piecewise linear bottom, dashed line is

partial cell and dash–dotted line is full cell).

For a triangular basin with a constant width, the analytical solution for the period of the
�rst mode oscillation takes the following form [14]:

T1 = 1:64
2L√
gD

(29)

where T1 is the fundamental wave period. For the triangular basin studied here, the analytical
value of T1 can be calculated and has a value of 298:05 s. Simulated fundamental wave
periods can be obtained by performing fast Fourier transform (FFT) to simulated surface
elevations. Figure 7 shows FFT results for simulated surface elevation at x=50m. The solid
line is the result of the piecewise linear bottom option and has peak values at a frequency of
0:003357s−1. This corresponds to a wave period of 297:89s and is very close to the analytical
T1 of 298:05s. The dashed and dash–dotted lines are results using the partial cell and full cell
options, respectively. The corresponding �rst mode periods for these two runs are 315.06 and
334:34 s, respectively. Compared to a relative error of just 0.054% for the piecewise linear
bottom treatment, the relative errors for the partial cell and full cell treatments are 5.707
and 12.176%, respectively. Obviously, the full cell option is not a good choice for this kind
of initial problem with a variable depth. Even the partial cell option is problematic with a
relative error over 5%.
The test case was also simulated using a di�erent Cartesian grid system with a constant

vertical spacing of ��=1:0 m and a constant longitudinal spacing of �x=45 m. Obviously,
the aspect ratio of the grid cell (��=�x) in the second grid system is much larger than that
of the �rst grid system. As a result, both the full cell option and the partial cell option have a
worse �tness of the bottom than those of the �rst grid system do. In Figure 8, simulated surface
elevations at x=67:5 and 832:5m are shown with solid and dashed lines, respectively. While
Figure 8(a) shows model results using the piecewise linear bottom options, Figures 8(b) and
8(c) show model results using the partial cell option and the full cell option, respectively. It is
apparent that due to a larger aspect ratio, model results using partial or full cells di�er further
more from those using the piecewise linear bottom. Some higher mode oscillations can be
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Figure 8. Comparison of the simulated surface elevations at x=67:5 and x=832:5m of the
triangular basin using the piecewise linear bottom (a), partial cells (b) and full cells (c).

The aspect raton of the grid cell is 0.0222.
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Figure 9. A sloping open channel with one open end and one closed end.

seen in model results using the partial cell option. In model results using the full cell option,
these higher mode oscillations are further enhanced. An FFT analysis similar to that shown in
Figure 7 was conducted for simulated surface elevations at x=67:5m using the three bottom
treatment methods. The �rst mode periods are 297.89, 321.25 and 341:33 s for the piecewise
linear bottom option, the partial cell option and the full cell option, respectively. Since the
�tness of the bottom is not a�ected by the aspect ratio of the grid cell when the piecewise
linear bottom is used, the �rst mode period remains 297:89s, the same as that in the �rst grid
system with a relative error of just 0.054%. However, the relative errors of the �rst model
period for the partial and full cell options now become 7.784 and 14.521%, respectively, and
both are at least 2% larger than the relative errors for the two bottom treatment methods using
the �rst grid system.

5.2. A boundary value problem

The boundary value problem used to test the responses of the LAMFE model to various
bottom treatment methods is a co-oscillating wave entering a sloping channel (Figure 9) that
has a length of 8 km and a width of 100 m. One end of the channel is closed, while the
other is open. The water depth decreases linearly from 5 m at the open end to 1 m at the
closed end. The density in the channel is constant. The boundary condition at the open end
is speci�ed by a small amplitude wave with an amplitude of 2 cm and a wave period of 1 h.
The analytical solution for this boundary value problem can be found in References [15, 16].

It can also be easily derived by superimposing the incident wave with waves re�ected from
the closed end and along the channel due to a decease in water depth [12]

h= hi + hrx + hl (30)

where hi is the incident wave, and hrx and hl are re�ected waves along the channel and from
the closed end, respectively. The incident wave takes the following form [17, 18]:

hi = ae j(�+!t) (31)

where j=
√−1, �= ∫ x0 k dx, k=!=√gh; the x-co-ordinate is from right to left; and a is the

amplitude of the incident wave and can be calculated from the following equation:

a
√
gk= a0

√
gk0 (32)
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Figure 10. Comparison of simulated free-surface elevations using the three bottom treatment methods
with analytical solutions for a co-oscillating wave case in a sloping channel. Solid lines are analytical
solutions, squares are model results using a piecewise linear bottom (PWLB). Circles and triangles are

those using the partial cell and full cell options, respectively.

where a0 is the incident wave amplitude at the open end of the channel. Waves re�ected
along the channel can be expressed as follows:

hrx =R(x)ae j(�−!t) (33)

where R is the re�ection coe�cient, which, to the order of the bottom slope, is [18]

R(x) ≈ −1
2

∫ x

0

[
d
dx
ln(kh)

]
e2j� dx (34)

The re�ected wave from the wall at the closed end is

hl = [1− R(L)]ae j(�−!t) (35)

When the LAMFE model was applied to this boundary value problem, a uniformly dis-
tributed grid system was used with a vertical spacing of ��=0:5m and a longitudinal spacing
of �x=400m. The model was run from the cold start by assuming that the water in the basin
is still at t=0. The model was run for 200 wave cycles with three di�erent bottom treatment
methods. The bottom and sidewall frictions were set to zero for the model runs. The eddy
viscosity terms were omitted. Model results show that a dynamic steady state was normally
achieved after less than 15 cycles. Therefore, the initial disturbances disappear after 15 cycles
and the steady-state model results are the numerical solutions for the boundary value problem.
Figure 10 shows the comparison of analytical solutions with model results using the three

bottom treatment methods. It compares two instantaneous free surfaces computed from the
model with the analytical free surfaces. The solid lines are analytical solutions, while the
symbols are numerical model results. Simulated free surfaces using the piecewise linear bottom
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are plotted with squares ( ), while those using the full cell and partial cell options are drawn
with circles (◦) and triangles (�), respectively. It can be seen that although the piecewise
linear bottom still yields the best model results, the di�erences among simulated free surfaces
using di�erent bottom treatment methods are small and all three methods work very well for
this co-oscillating wave case. The root-mean-square (RMS) errors for the piecewise linear
bottom, partial cells and full cells are about 1.53, 2.49 and 3.38%, respectively, of the wave
amplitude at the open end.

5.3. A barotropic case

In has been mentioned in Section 1 that although a �-co-ordinate model can �t the topogra-
phy nicely, it has problems associated with pressure gradient errors and increased numerical
di�usions for areas with steep bottom slopes [3, 4]. Huang and Spaulding [19] investigated
the arti�cial di�usion problem of a �-co-ordinate model in a closed sloping basin with a
slope of 0.03. At t=0, the water in the basin was still with a stable vertical density strati�-
cation (salinity at t=0 varied from 31 ppt at the bottom to 13 ppt at the free surface). After
a simulation period of 30 days, a strong arti�cial baroclinic circulation was generated with
a totally di�erent salinity distribution from that at t=0. The di�erence between the initial
salinity �eld at t=0 and the predicted salinity �eld at the end of the 30-day simulation using
a �-co-ordinate model could be as large as over 5 ppt in the basin. To con�rm that the use
of the piecewise linear bottom in the LAMFE model does not cause any increased numeri-
cal di�usions in areas with steep bottom slopes, a barotropic case in a symmetric triangular
basin was tested in this study to evaluate the performance of the piecewise linear bottom.
As shown in Plate 1, the symmetric triangular basin has a length of 400 m and a maximum
depth of 6 m in the middle of the basin. The slope of the basin is 0.03, the same as that
in the test case of Huang and Spaulding [19]. At t=0, salinity in the basin varies only in
the vertical direction, from about 30 ppt at the lowest point of the basin to about 12 ppt at
the free surface. The simulation domain was discretized using uniform grid cells that have
a vertical spacing of ��=0:6 m and a longitudinal spacing of �x=20 m. The model was
run for a simulation period of 30 days (720 h) using the piecewise linear bottom. Plate 1(a)
shows the initial salinity and velocity distributions in the triangular basin. Simulated salin-
ity and velocity distributions at t=720 h are shown in Plate 1(b). It can be seen that both
Plates 1(a) and 1(b) are identical. No arti�cial baroclinic circulation was generated during the
model run.

5.4. A real riverine estuary case

The LAMFE model was used to simulate hydrodynamics in the Lower Hillsborough River
located in Tampa, Florida using the three topography treatments. The simulation domain is
from the City of Tampa Dam to Platt Street (Figure 11) and has a total length of about 16km.
Measured real-time data at the upstream and downstream boundaries were used as boundary
conditions. Model results were compared to observe the responses of the LAMFE model to
the three topography treatment methods.
Figure 12 shows the z-level grid system used for the model runs. Thirty-two grids ranging

from 300 to 840 m in length were used along the river and 16 vertical grids were used to
resolve the depth with a vertical spacing varying from 30 to 50 cm. The thick solid line in-
dicates the piecewise linear bottom used in the simulation. Figure 13 shows comparisons
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Figure 11. The Lower Hillsborough River, Tampa, FL, U.S.A.

Figure 12. A z-level grid system for the Lower Hillsborough River, Florida
with a piecewise linear bottom.

of simulated time series of surface elevation at Sligh Avenue and mid-depth salinity at
Columbus Drive (Figure 11) with those of measured real-time data, which are drawn as
solid lines. Dashed lines in Figure 13 indicate model results with the piecewise linear bottom,
while dash–dotted lines and dash–dot–dotted lines indicate those with partial cells and full
cells, respectively. It can be seen from the �gure that simulated surface elevations agree very
well with measured data, regardless of which bottom treatment method is used. The RMS
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Figure 13. Comparison of simulated free surfaces (top, at Sligh Avenue) and salinity (bottom, at
the mid-depth of Columbus Drive) in the Lower Hillsborough River, Florida using the three bottom

treatment methods with measured data.

errors between simulated and measure surface elevation are only about 1.07, 1.98 and 2:53cm
for the piecewise linear bottom, partial cells and full cells, respectively. Except during the low
tide, di�erences among simulated salt concentrations using three di�erent bottom treatments
are generally insigni�cant in comparison to the di�erences between measured salinity and sim-
ulated salinity using either one of the three methods. This suggests that factors other than the
topography �tting (e.g. freshwater in�ows, bathymetry data, measured salinity at the down-
stream open boundary, etc.) may contribute major errors to the model results. The RMS errors
between simulated and measured salinity for the piecewise linear bottom, partial cells and full
cells are 1.85, 1.98, and 2:02 ppt, respectively. Although the elevation of the riverbed varies
signi�cantly along the river, model results using di�erent topography treatment methods do
not exhibit signi�cant di�erences for this riverine estuary that is mainly driven by the tide and
salinity at the downstream boundary and the freshwater in�ow at the upstream boundary. Since
a relatively �ne resolution was used to discretize the water column, the fact that no signi�cant
di�erences were observed in model results using di�erent bottom treatment methods suggests
that for this dominantly boundary value problem, the requirement for terrain-following may
not be very critical if an appropriate vertical spacing is used.
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6. CONCLUSIONS

A piecewise linear bottom has been used in a laterally averaged, 2D hydrodynamic model
named LAMFE. The use of the piecewise linear bottom results in a hybrid z-level model
that is capable of �tting the bottom topography, but does not possess the usual drawbacks
normally seen in a stretched co-ordinate model such as a �-level model. Since computational
cells are not necessarily the same as the grid cells and their side views are not necessarily
rectangular, �ux-based �nite di�erence equations are derived and used in the model. The use
of �ux-based �nite di�erence equations guarantees that the mass conservation is satis�ed both
locally and globally. Additional coding e�ort due to the use of computational cells is only
minor.
The LAMFE model was used to simulate an initial value problem and a boundary value

problem to evaluate the responses of the model to di�erent topography treatments. The initial
value problem is a seiche oscillation in a triangular basin, while the boundary value problem
is a co-oscillating wave in a channel with a bottom slope of 1=2000. Responses of the model
to full cells, partial cells and the piecewise linear bottom were investigated for the two
wave cases. To verify that the use of the piecewise linear bottom can avoid the numerical
di�usion problem often seen in a �-co-ordinate model for areas with steep bottom slopes, the
piecewise linear bottom option for the topography treatment was tested with a barotropic case
in a symmetric triangular basin. The model was then applied to the Lower Hillsborough River,
FL, U.S.A. to compare the di�erences among simulated results using the three topography
treatment methods.
Model tests show that the piecewise linear bottom allows a z-co-ordinate model to �t the

bottom topography, yet does not possess any problems associated with pressure gradient errors
and increased numerical di�usions. This can be clearly seen from the model results for the
barotropic test case. The model was run for a simulation period of 30 days, but no arti�cial
baroclinic circulation was generated, indicating that the hybrid z-level model presented here is
able to retain the advantage of a traditional z-level model. In all test cases, model results using
the piecewise linear bottom are always better than those using partial cells, which are better
than those using full cells. It was found that �tting the topography is especially important
for initial value problems. With a larger aspect ratio of the grid cell, model results using full
cells or partial cells contain larger errors due to the poor �tness of the bottom topography.
For the boundary value problem and the salinity transport process in the Lower Hillsborough
River, the piecewise linear bottom yields better model results than the partial cell option or
the full cell option does. Nevertheless, the necessity for topography-�tting may not be very
critical in predicting the free-surface elevation and the mid-depth salinity, provided that the
vertical spacing is �ne enough to appropriately describe river cross-sections. Future research
using various resolutions for the water column discretization need to be conducted to study the
di�erences between model results using a staircase bottom and those using a piecewise linear
bottom and to reveal how model results using the staircase bottom (full cells or partial cells)
will approach those using the piecewise linear bottom as the vertical resolution increases.
Unlike a �-co-ordinate model that has to set a minimum water depth in the simulation

domain to ensure that the vertical spacing does not become zero, the piecewise linear bottom
does allow the water depth to go to zero (see the �rst and the third test cases where two
di�erent triangular basins were used for model testing.) This is another advantage that the
piecewise linear bottom has over a �-co-ordinate model. In many model applications in the
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area of coastal environmental engineering, allowing the water depth to go to zero is very
important, because many ecological processes only occur in very shallow areas where the
depth approaches zero.
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